不可不知:机器学习等领域的五大关键发展趋势

   2020-07-15 IP属地 火星聪慧网sxxjymysxxjymy80
核心提示:发表于: 2020年07月15日 02时48分21秒

机器学习

机器学习

    今天搞技术开发和执行的人聊天一定离不开这些话题:人工智能、机器学习或Bot。风险投资公司Madrona最近主办了一个机器学习和人工智能会议,将智能应用生态系统领域里的几个最大的科技公司和创新创业公司聚集到了一起。

    会议的关键主题之一来自于对与会者的一个调查。参与调查的每个人都说机器学习对他们公司和行业很重要或者非常重要。

    但是,超过一半的调查回复也说他们的组织在机器学习上还不够专业,还没法做好他们需要做的事情。

    下面是这个峰会上谈论的另外五大趋势。

    趋势一:每个应用都将是智能应用

    如果你的公司还没有使用机器学习检测异常、推荐产品或者预测客户流失,那么很快它就会用上了。因为新数据的快速生成,大量计算力的可用和新机器学习平台的方便使用(无论是它来自亚马逊、谷歌和微软这样的大技术公司还是Dato这种创业公司),我们有望见到越来越多能生成实时预测而且会不断变得更好的应用。在我们过去六个月遇见的100个早期创业公司中,90%以上都在计划使用机器学习为客户提供更好的体验。

    趋势二:智能App出现在微智能和中间件服务的创新中

    当下的公司可以分为两类(广义上):开发某种形式的机器学习/人工智能技术的公司,或者在应用和服务中使用机器学习技术和人工智能的公司。大量的创新集中在构建模块服务(又名,中间件服务)上,其中包括数据准备(datapreparation)服务和学习服务或者模型即服务(models-as-a-service)的提供商。

    理解“what”背后的“why”是人工智能工作中的另一个关键部分。

    随着微服务以及通过RESTAPI与微服务无缝连接的能力的出现,学习服务及机器学习算法的使用和再使用迎来了增长的趋势——再也不需要从零开始编写服务了。

    例如,Algorithmia公司运行着一个算法市场,任何智能应用都可以在该市场中按需要使用其中的算法。将这些算法和模型与特定数据片(在特定的垂直范围内特定的使用情况)结合起来就是我们所说的微智能(micro-intelligence),它可以无缝接入到应用中。

    趋势三:在机器学习和人工智能世界里,信任和透明绝对关键

    去年,机器学习和人工智能的几个备受瞩目的实验受到了关注。例如微软的Tay、谷歌的DeepMind AlphaGo、Facebook的M和数量不断增加的各种聊天机器人。自然用户接口(语音、聊天和视觉)的兴起为人类与虚拟助手(苹果Siri、亚马逊Alexa、微软Cortana和Viv)的互动提供了非常有趣的选择和机会。

    也有一些与人工智能互动的例子让人感到不安。比如,在佐治亚理工学院一个在线课程将结束时,学生才惊讶地发现他们交互了整个学期的一个教学助理竟然是聊天机器人(名叫JillWatson,得名于IBM Watson)

    这展示出技术和创新的力量,也给Bot、机器学习和人工智能带来了许多信任和透明度上的规则问题。

    理解“what”背后的“why”是人工智能工作中的另一个关键部分。当一位医生或一位病人被告知他们有75%的可能性患上癌症然后应该使用某种药来治疗时,一定会不高兴。他们需要理解这个预测结论和治疗方案是从哪些信息中得来的。

    我们绝对相信继续发展的话,机器学习需要完全透明,并且需要透彻地思考将会成为生活和社会进步不可或缺的一部分的技术进步带来的伦理问题。

    趋势四:机器学习需要人类

    关于我们是否应该担忧人工智能机器占领世界已经讨论过很多了。正如人工智能和机器学习已经给自动化带来了很多有意义的帮助一样,在创造正确的端到端的用户体验中我们也绝对将需要人类的参与。

    如果你的公司还没有使用机器学习检测差异、推荐产品或者预测客户流失,你很快就会开始了。

    Redfin公司曾做了个实验:给用户发送利用机器学习生成的推荐。这些机器学习生成的推荐比用户自己搜索和警报过滤器得出来的东西有更高的采纳率。

    但是,当Redfin在将推荐发送给客户之前要求他们评价这些推荐时,才实现了真正的进步。在客户评价了这些推荐之后,Redfin就能使用这些客户的修正意见作为额外的训练数据,之后这些推荐的点击率得到了显着的提升。

    Splunk公司描述了IT专业人士可以如何部署和使用Splunk来帮助他们工作的更好更高效,这再次强调了机器学习的应用中必须要有人这一观点。如果没有人的参与,客户将无法从Splunk上获得最大的价值。

    另一家公司Spare5也是很好的例子。它们描述了在训练机器学习模型时,有时需要人来修正和分类进入模型的数据。机器学习中有个关于数据的谚语:进去的是垃圾,出来的也是垃圾。数据的质量和完整性是建立高质量模型的关键。

    趋势五:机器学习是智能应用的关键部分......但是你也许不需要一开始就使用

    机器学习是建立人工智能时不可或缺的关键部分,但最重要的目标还是让你的智能应用能够与用户产生共鸣,让客户能方便地使用这些应用并不断获得更好的体验。

    想要有效地使用机器学习和人工智能,你通常需要一个大型数据库。在这个事情上有成功经验的人给出的建议是:从你想提供的应用和体验开始,在这个过程中,考虑如何能让机器学习改进你的应用以及需要收集并建立怎样的数据库来给客户提供最好的体验。

    我们想让每个应用都成为智能的,在这个过程中,我们已经付出了很多很多努力,但是我们仍然处在早期阶段。正如艾伦人工智能研究所(Allen Institute)CEO Oren Etzioni在一次炉边谈话中所说的那样:在人工智能和机器学习上我们已经取得巨大的进步,但是今天就宣布取得了机器学习的成功就像是“我们爬上了树梢却宣布自己登上了月球”。

责任编辑:李刚01

基础电子

集成电路|
晶 振
分立器件|
连接器
电容电阻|
传感器
仪器设备|
LED照明

终端应用

智能硬件|
无人机
智能家居|
消费电子
网络通讯|
工控电气
医疗电子|
汽车电子

交易
供应链

金融平台
交易平台
推客平台
物流平台

电子商城

风华高科|金城微|飞虹电子长亭电子|华芯邦|南电科技东海旭日|合科泰|美隆电子晶恒电子|银创生|联益电子 科通芯城|晶科鑫|容亮电子冰洋电子|华芯邦|南电科技东海旭日|合科泰|美隆电子晶恒电子|银创生|联益电子 免费注册 登录
  • 编辑视点
  • 市场分析
思 嘉
    ·HCFT品牌盛会投票攻略 简单三步走 ·十年“匠心” 晶科电子专注LED极.. ·机智云:智能充电服务 改变汽车产业 ·2016新能源产业高峰论坛开幕 共创.. ·2016新能源产业高峰论坛精彩呈现..
单 双
    ·容一电动李进普:做好电动汽车零.. ·同舟科技:品质为本 专注LCD领域 ·华燕房盟费元华:如何用VR卖房? ·参选企业见证HCFT实力 那些角逐品.. ·聚电:致力于为城市提供新能源整..

半导体产值或衰退

今年全球半导体产值估衰退3.2%...[详情]
    ·AbleCloud智能行业解决方案助力体重秤企.. ·“自拍死”已成为全球现象 360手机助手.. ·1000元购买力8年缩水424元 拯救钱袋子.. ·智能蓝图再扩张 美菱CHiQ二代冰箱生而不同 ·美利动力原与闲鱼签约成为闲鱼二手车平..

深度专题更多>>

  • 深圳敏杰:做技术先行的传感器企业
  • 深圳敏杰:做技术先行的传感器企业
  • 手机芯片的较量
  • 深圳敏杰:做技术先行的传感器企业
  • 手机芯片的较量
  • 直击2016慕尼黑电子展

热门活动更多>>

互联网+ 2016新能源产业高峰论坛

时间:2016年6月24日

地点:深圳会展中心(7号馆)

大家都爱看更多>>

·随手记首轮公益金融活动结束:近万名用.. ·惨不忍睹:2016年Q2主板出货量暴跌30% ·兼收并蓄 国产芯片技术有望突破 ·迎7nm制程战 台积电扩编研发大军 ·SUGAR糖果手机F7发布 骁龙430卖1999! ·谷歌无人驾驶项目或独立 避免重蹈特斯拉覆 ·GTX 1060售价死磕RX 480 ·大屏iPhone 7要双摄像头?Plus独占别太多 ·多因素影响下 今年全球半导体市场规模恐.. ·华为再起专利诉讼 保护知识产权华为孤军..
 
举报收藏 0打赏 0评论 0
 
更多>sxxjymy其它资讯
 
更多>相似资讯
更多>同类资讯
  • sxxjymy
    加关注0
  • 没有留下签名~~
推荐图文
推荐资讯
点击排行
该作者发布的供应信息
网站首页  |  用户协议  |  关于我们  |  联系方式  |  隐私政策  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  浙ICP备16039256号-5  |  浙公网安备 33060302000814号