慧聪安防网讯 自动驾驶汽车有三大主要系统功能:(1)汽车传感器相关系统功能;(2)汽车计算相关功能,也就是人们所认为的人工智能;(3)汽车控制相关的功能,控制油门、刹车、方向盘等。
今天主要讨论传感器和传感器数据使用方面的问题,即传感器融合。虽然今天只谈这一个方面,但同时也要意识到三大系统必须协同运作,这一点十分关键。就算车上装了最好的传感器,但人工智能和控制系统都很弱的话,那肯定不是一辆好开的自动驾驶汽车。但如果你有很棒的人工智能和控制系统,但配的传感器很糟糕的话,同样还是会碰到问题,因为如果传感器不灵的话,汽车就没办法感知所处的周遭环境,继而撞上附近的物体。
作为CyberneticSelf-DrivingCarInstitute的执行董事,我对传感器融合特别感兴趣,因此我认为,可以就这一话题提供一些见解。但是,正如我之前所提到的,另外两个系统对于拥有一辆能正常运作的自动驾驶汽车同样重要。
自动驾驶汽车需要有能探测所处环境的传感器,此外还需要有专门的子系统来控制传感器以及处理传感器收集到的数据。这些传感器可以是摄像头,收集图形数据;可以是雷达,通过无线电波探测物体,也可以是利用激光光波的激光雷达,还可以是超声波传感器,等等。传感器可以分为主动传感器和被动传感器两种:被动传感器,诸如摄像头,只能接收外部的光,形成图像;主动传感器的一例则是雷达,雷达可以发出无线电磁波,并接收反射回的电磁波,探测是否有物体在附近。
为了解读所收集到的数据,需要通过某种方式将各类数据整合在一起,这一过程被称为为传感器融合。通常,整个人工智能处理系统会模拟出汽车周围环境,人工智能系统同时还会不断接收新的传感器数据,更新模型。传感器数据融合之后,人工智能需要决定应该采取何种行动,然后向汽车的控制系统发出合适的指令,执行这些命令。可以类比人类身体的运作方式。人的眼睛在接收了视觉图像后,接收到的图片会送到人的大脑。你的大脑将构建一个周围世界的模型。基于收到的新图像,大脑会更新模型,并推断出身体下一步该做什么。
假设现在你在巴塞罗那奔牛节现场。站在街转角,等着疯狂公牛的到来。大脑建立了一个周围街道和行人的模型。突然你看见公牛朝着你冲了过来。公牛冲锋的画面会传到你的大脑,随后大脑更新当下情况的模型,认为你应该“撒开脚丫子跑”。然后,大脑就命令你的动起来,开始逃命。大脑命令你沿着街道逃跑,远离公牛。
在这个类比中,我们有一个传感器,也就是人的眼睛。眼睛收集视觉图像。眼睛本身不会处理收集到的图像。主要功能就是收集图像。你的眼球有一定的容错性:即使遮住一部分视线,眼睛还是可以捕捉到图像。就算视线被类似纱布的东西完全遮住了,眼睛的功能还是正常的,但是它也会意识到有什么地方不对。这一信息一样会传到大脑。
就解读图像来说,眼球本身不具备处理图像的功能。据目前所知,眼球无法识别出朝着你冲过来的是公牛。参与识别的是大脑,在接受到眼睛收集到的图像后,大脑尝试解读图片的内容和意义。大脑会对周围环境进行监控。当你站在巴塞罗那的时候,大脑知道你在奔牛节活动现场。大脑建立的这种模型能结合环境对公牛冲锋的图像进行解读。因为它意识到了,在所处的这个环境里,有可能出现公牛朝着人冲过来的情景。
假设你是站在纽约时代广场上。模型里可能不会包含有公牛冲过来的情景。就算如此,大脑还是能处理这样一张图片,只不过和纽约时代广场的模型不兼容。朝你冲过来的可能会是一辆出租,也可能是一个穿着蜘蛛侠外衣的怪咖,但是绝不会是一头公牛。
人类有多种感官。人的大脑除了利用视觉,还会利用触觉、能察觉怪味的嗅觉、味觉,还有听觉来。与人类五感配套的,还有身上的各种器官。例如,耳朵是听觉传感装置。耳朵接收到声音后,将信息传给大脑。大脑试图找出这些声音的含义。
回到刚才巴塞罗那的那个例子,在公牛出现在街转角之前,你可能就已经听到了公牛的蹄声。听到蹄声后,大脑会立即更新模型,加入“公牛在附近”的信息。甚至还可能命令你开始跑路。但它也可能会命令你先等着,通过眼睛确定公牛是不是朝着你冲过来。
在接收到某一感官的信息后,大脑可能需要另一感官的数据来进行对照和确认。在自动驾驶汽车上,可能只有一种传感装置,比如说雷达。也就是说,这类自动驾驶汽车只能通过雷达探测收尾环境。就像人类只有视觉,而失去其他感官一样。
自动驾驶汽车还可以搭载多种传感装置——例如雷达、激光雷达、超声波传感器。自动驾驶汽车上既有搭载单一类型的,也有搭载多种类型传感器的。拿特斯拉举例,一辆特斯拉在前保险杠下方装雷达单元的同时,还有有六个超声波探测器单元,分别分布于车外壳或者车里。
每种类型的传感器都有不同的用途。眼睛用来看,耳朵用来听,不同类型传感器功能也不一样。例如,雷达用于距离探测和物体的速度,探测范围通常在500英尺左右。超声波传感器则用于近距离探测,探测范围在距车3到6英尺内。这种雷达多用于常见的驾驶情景之中,检测无人驾驶汽车前方是否有其他车辆。而超声波传感器则用来辅助停车,因为停车时汽车需要知道附近车辆的位置。超声波传感器还可以辅助变道,在变道的时候,传感器可以探测到视觉盲区里的车辆。
之前提过,眼睛有一定的容错率,即使在有障碍的情况下也能获取部分图片。自动驾驶汽车上的传感器也同样如此。一个雷达装置可能会检测到电磁波没发出或者反射回来的电磁波信号不稳定。这有可能是雷达本身出了问题。也有可能是所探测的物体超出正常探测范围,比方说探测范围是500英尺,但物体距离是600英尺,所以反射回来的雷达波信号很弱。雷达也就无法确定物体到底在不在那。
也有可能会出现“鬼影”,也就是传感器探测到有物体,但实际上没有的情况。想象你身处一间非常暗的房间里,然后觉得眼前出现了什么东西漂浮在空中。那到底是真的有什么东西,还是眼睛的错觉呢?眼球会欺骗我们的大脑,基于虚假信息对大脑进行刺激。
类似的,已经有研究人员证明了,可以愚弄自动驾驶汽车上传感器。利用一些图片,研究人员愚弄了自动驾驶汽车上的摄像头,让他们误以为自己处在一个和现实不相符的场景里。想象你在巴塞罗那,但我在你眼前举着一张纽约时代广场的图片,于是你的大脑会试着弄清楚到底发生了什么:眼前的究竟是一张图片呢?还是时空错乱了?
研究人员还戏弄了雷达。可能大家已经听说过,很多年前就有人借助违规设备,糊弄警车雷达测速仪的事情。有了这种装置后,警车雷达测速仪显示的速度远低于汽车实际驾驶速度。那些设备都涉嫌违法。
传感器的探测结果可能会出现“假阳性”的情况。“假阳性”是指传感器探测到实际不存在的物体的情况。假设雷达探测到车辆正前方有另一辆车停在路上。自动驾驶汽车的人工智能系统或许会紧急刹车。但车载摄像头传输的画面却显示前方没有车辆,与雷达侦测到的数据冲突。这个时候,人工智能系统需要决定哪个才是正确的,是显示有车辆的雷达,还是显示没有车辆的摄像头。也许是因为那个物体摄像头拍不到,但是雷达能侦测到。又或许雷达只是谎报,应该相信摄像头,因为摄像头拍摄的照片里没有任何物体。
如果雷达是正确的,而且物体确实在那,但是摄像头的照片里却没有物体,那么摄像头报告的结果就是“假阴性”。“假阴性”是指传感器显示没有,但是实际上却有物体存在的情况。任何传感器在任何情况下都可能会汇报“假阴性”或者“假阳性”的情况。自动驾驶汽车的人工智能则需要弄明白哪个是真的,哪个是假的。这对人工智能来说很难做到。
人工智能通常会把所有的传感器数据都列举出来,判断是否有哪一个传感器出错了。一些人工智能可能会预先设定好,认为某些传感器比其他传感器更准确,所以出现冲突的时候就依赖优先级高的传感器。其他可能会启用投票机制,比方说有X个传感器判断有东西在那儿,然后又Y个传感器显示没有东西,若X大于Y的话,那么人工智能就断定有东西在那。另一种流行的方法是随机抽样一致性算法(RANSAC)。