如何满足复杂系统的高性能时序需求

   2020-07-16 IP属地 火星聪慧网sxxjymysxxjymy70
核心提示:发表于: 2020年07月16日 12时58分19秒

    时钟设备设计使用I2C可编程小数锁相环(PLL),可满足高性能时序需求,这样可以产生零PPM(百万分之一)合成误差的频率。高性能时钟IC具有多个时钟输出,用于驱动打印机、扫描仪和路由器等应用系统的子系统,例如处理器、FPGA、数据转换器等。此类复杂系统需要动态更新参考时钟的频率,以实现PCIe和以太网等其它诸多协议。

    时钟IC属于I2C从器件,需要主控制器来配置内部PLL逻辑,其控制逻辑可以写入微控制器内。作为I2C主机,微控制器将配置写入时钟IC的内部易失性存储器并控制PLL。因此,可以通过板上MCU-IC组合进行系统时钟频率的动态更新。可编程微控制器为高性能时钟IC提供控制逻辑能力,通过减少板载IC和板上走线使整体设计更加紧凑,并降低最终物料成本。

    操作理论

    图1为高性能时钟设备的基本PLL架构。该设计使用比例因子为PLL输出端口提供时钟合成。最终输出频率的基本公式为:

如何满足复杂系统的高性能时序需求

    fREF为输入参考晶体频率(在多数应用中通常为8MHz至48MHz)。

    DIV_R(DIV_R1和DIV_R2)是输入频率参考的分频因子。此类分频器名为预分频器。

    DIV_N为小数N分频因子。

    DIV_O(DIV-O1、DIV-O2、DIV-O3和DIV-O4)为输出前的后分频因子。

 图1简化高性能时钟的PLL架构框图

图1简化高性能时钟的PLL架构框图

    图1中的橙色框图为参数,使用这些参数的方程式为可编程方程式。这些参数可以在出厂时写入时钟设备的非易失性存储器。时钟设备具有内部易失性和非易失性存储器,两个存储器互相复制其内容。非易失性存储器在出厂时已被写入所需配置,在最终应用中,当设备启动电源时,非易失性存储器的内容会被复制到易失性存储器。同时,PLL产生所需的默认时钟输出。

    时钟IC的重要特性之一就是通过I2C接口实现运行时可编程。通过可编程功能,用户可以更改设备的易失性存储器内容以进行即时更改。只需使用适当的I2C指令,就可以通过主控制器实现用户配置文件的即时编程功能。

    设备的非易失性存储器还可以存储预定义的多用户配置。用户可以使用频率选择(FrequencySelect,FS)功能以选择其中一个配置。该FS-位为设备中可用的CMOS输入引脚。FS引脚应用N-位外部CMOS信号,然后内部选择存储在非易失性存储器中的一个配置文件,这个配置文件同样也被复制到了易失性存储器,PLL则输出不同的信号。

    同时,微控制器通过I2C提供数据来控制高频时钟。使用微控制器的优点是,它具有不同的通信外设和通信协议,如I2C、SPI、UART、蓝牙、ZigBee等,使得系统能够以主从配置将数据传输到其他微控制器,也可以使用一个自定义的应用传输至安卓和iOS设备。此外,微控制器还配有各种IDE工具用于简化设计。这可以更好地证明使用I2C指令来配置PLL参数、编写并验证定制应用程序是合适的。

    高性能时钟的应用需求

    高性能时钟IC专为消费者、工业和网络应用而设计。此类时钟IC具有多个从不同PLL导出的差分输出和单端输出,并且可以通过I2C接口实现可编程功能。此外,高性能时钟IC不仅可以支持PCIExpress(PCIe)1.0/2.0/3.0、USB2.0/3.0和万兆以太网(GbE)等关键接口标准的参考时钟。还能支持压控晶体振荡器(VCXO)和频率选择(FS)等其他增值功能。

    高性能时钟IC采用设计实现I2C从机模式。因此,需要一个板载I2C主机来控制以下可编程功能:

    ·通过I2C接口进行系统内编程

    ·通过频率选择(FS)引脚更新配置

    ·外部复位操作

    ·压控晶体振荡器(VCXO)操作

图2:微控制器-高性能时钟接口电路

图2:微控制器-高性能时钟接口电路

    微控制器在时钟ICPLL控制中的作用

    如图2所示,将时钟IC连接到微控制器电路。时钟IC具有内部PLL模块,其功能是提供作为固定直流电压的调谐电压(Vtune),而调谐电压将随频段而变化。PLL模块在输入端接收本地振荡器频率,由内部前置放大器放大信号。另外,预分频器对输入频率进行下变频,并将其作为输入传送至相位比较器。

图3:PLL模块的微控制器控制。

图3:PLL模块的微控制器控制。

    微控制器通过I2C发送数据到可编程分频器。该分频器也接收来自参考振荡器(例如4MHz晶体振荡器)的输入。相位比较器(即相位检测器)通过预分频器接收本地振荡器频率(例如87.15MHz),还通过参考分频器和参考振荡器接收微控制器的输入(例如,87.15MHz)。如果两个输入都匹配,相位比较器将提供Vtune调谐电压。一旦本地振荡器频率与微控制器频率数据之间稍有不匹配,都将无法提供调谐电压(Vtune)和输出。图3所示为完整的框图。

    在微控制器的帮助下,PLL通过调谐本地振荡器频率产生闭环,并在输出端产生调谐电压。调谐电压将从较低频率信道增加到较高频率信道。通过改变预分频器和可编程分频器的值,微控制器可以调整步长。

    步长=(本地振荡器频率/预分频器)X(可编程分频器/参考振荡器)

    表1所示为部分配置

通过I2C接口进行系统内编程

    通过I2C接口进行系统内编程

    系统内编程可为系统设计实现快速有效的迭代。编程数据序列可通过SCL和SDA引脚传送到时钟器件,把操作顺序编程至板载微控制器(主设备)中,通过命令和数据在运行时与从机时钟进行交互。

    此处为系统示例,其中时钟信号必须以采样率的倍数为准。该时钟频率在155.52MHz和156.25MHz两组频率之间变动。这意味着驱动串行控制器的时钟必须能够在这两个值之间灵活切换。微控制器主设备可以访问并修改写入易失性存储器的PLL配置,从而满足这两个频率需求。

    通过频率选择(FS)引脚更新配置

    高性能时钟设备支持包含个性化配置的多个用户配置文件。在FS引脚转换方面,高性能时钟器件具有两个时序规格-快速切换和慢速切换。

    快速切换适用于输出ON/OFF、输出分频值变化,以及输出MUX设置更改。慢速切换则适用于更改PLL参数(包括PLLON/OFF)。顾名思义,快速切换中的输出变化更快,而慢速切换的速度较慢。两种切换类型都可以打开或关闭输出,并且不出丝毫差错。图4所示为FS与输出时钟之间的时序关系。

图4:频率选择操作

图4:频率选择操作

    外部复位操作:

    当外部复位生效时,时钟IC进入低功耗模式。输出和I2C总线信号处于高阻抗(HI-Z)状态,直到取消外部复位并完成初始化。外部复位重启易失性存储器内容,存储在非易失性存储器中的配置则被复制到易失性存储器。当需要重新初始化任意一个系统中运行的应用程序时,该功能将被使用。

    压控晶体振荡器(VCXO)操作:

    对某些应用而言,输出时钟频率应通过使用模拟反馈跟踪输入数据流。如图5所示,时钟IC作为大锁相环的一部分。ASIC或SoC负责跟踪输入流、计算误差并产生PWM信号(通常来说),随后将误差信息反馈至本地时钟发生器以进行频率调谐。

 图5VCXO示例电路

图5VCXO示例电路

    VCXO功能能够修改PLL频率,因此频率牵引不依赖于晶体特性、温度、电压或设备工艺。VCXO调制是线性、精准调制。也可以使用时钟参考。通过微控制器的内置模拟模块,VCXO的控制逻辑精准到小数点后6位。

    作为I2C主设备,微控制器将配置写入时钟IC的内部易失性存储器并控制PLL。因此,通过板载MCU-IC组合可以实现系统时钟频率的动态更新。开发人员可以使用可编程微控制器,为高性能时钟IC提供控制逻辑。这可以减少对板载IC和走线数量的需求,使得整个系统设计更加紧凑。

    微控制器配备强大IDE工具,可以加速应用开发。集成可编程片上系统(PSoC)器件可进一步简化设计并有助于降低整体产品成本。有关高性能时钟IC设计的更多详细信息,请参阅4-PLL扩频时钟发生器入门以及扩频时钟发生器的设计最佳实践。

 
举报收藏 0打赏 0评论 0
 
更多>sxxjymy其它资讯
 
更多>相似资讯
更多>同类资讯
  • sxxjymy
    加关注0
  • 没有留下签名~~
推荐图文
推荐资讯
点击排行
该作者发布的供应信息
网站首页  |  用户协议  |  关于我们  |  联系方式  |  隐私政策  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  浙ICP备16039256号-5  |  浙公网安备 33060302000814号